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This paper reviews recent progress made in incompressible Navier-Stokes simulation

procedures and their application to problems of engineering interest. Discussions are
focused on the methods designed for complex geometry applications in three
dimensions, and thus are limited to primitive variable formulation. A summary of efforts

in flow solver development is given followed by numerical studies of a few example

problems of current interest. Both steady and unsteady solution algorithms and their
salient features are discussed. Solvers discussed here are based on a structured-grid

approach using either a finite-difference or a finite-volume frame work. As a grand-
challenge application of these solvers, an unsteady turbopump flow simulation procedure
has been developed which utilizes high performance computing platforms. In the paper,

the progress toward the complete simulation capability of the turbo-pump for a liquid

rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as
a test case for evaluation of two parallel computing algorithms that have been

implemented in the INS3D code. The relative motion of the grid systems for the rotor-

stator interaction was obtained using overset grid techniques. Unsteady computations for

the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried
out on SGI Origin 3000 systems at NASA Ames Research Center. The same procedure has
been extended to the development of NASA-DeBakey Ventricular Assist Device (MAD) that

is based on an axial blood pump. Computational, and clinical analysis of this device are

presented.

INTRODUCTION

Incompressible flow can be considered as a limiting case of compressible flow as the flow speed approaches to a

significantly low value compared to the speed of sound. There are a large number of flow problems of practical
importance in aerospace and other fields which belong in this category. The incompressible Navier-Stokes

equations, which govern these flows, pose a special problem of satisfying the mass conservation equation because
it is not coupled to the momentum equations. Physically, these equations are characterized by the elliptic behavior

of the pressure waves, the speed of Nhich are infinite.

Various methods have been d_velc_ped,which can be classified in numerous ways depending on the choice of
formulations, variables, or algorithms. Since three-dimensional applications involving complex geometries are of our

primary interest, the primitive variable formulation is chosen in the present study. The primitive variables, namely the

pressure and the velocities, can easily be defined in real geometry compared to derived quantities like stream
function or vorticity. Therefore, for convenience and flexibility, primitive variable formulations were used for developing

incompressible Navier-Stokes codes (INS3D family of codes) at NASA Ames Research Center. The present article
is intended to present our progress made since the review given by the second author in 1989 as a VKI Lecture note

(Kwak, 1989). The solution procedures presented here are mainly within a structured-grid framework. During the last



severalyears,a largenumberof re,flewarticlesandbooksonCFDdiscussedincompressibleflowmethods.Fora
morecomprehensiveeviewof computationalmethodsforincompressibleflowingeneral,readersarereferredto
thesematerials,i.e.Hirsch(1988),HafezandOshima(1995).

SOLUTION METHODS

In this section, two solution method.', used in the development of INS3D, namely, an artificial compressibility method

and a pressure projection method, are reviewed. The governing equations will be given first, followed by a discussion

on the computational procedure related to the two methods. Three-dimensional incompressible flow with constant

density is governed by the following ",lavier-Stokes equations:
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where t is the time, x, the Cartesian coordinates, u, the corresponding velocity components, P the pressure, and

T,:s the viscous-stress tensor. All the variables have been non-dimensionalized by a reference velocity and length

scale. The viscous stress tensor car be written as

r,j = 2 vS_ - R,j (2.3)
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where, 13 is the kinematic viscositl, S,j is the strain-rate tensor, and _j are the Reynolds stresses. Various levels

of closure models for P_j are possible. In the present article, turbulence is simulated by an eddy viscosity model

using a constitutive equation of the following form:

1 6
R v =_ R** ,j -214S, j (2.5)

where Dt is the turbulent eddy viscosity. By including the normal stress, Ra, in the pressure, v in equation (2.3)

can be replaced by (13 + l)t) as follows.

_'i, = 20) _- 13,)S,j = 213TS0 (2.6)

In the remainder of this note the total viscosity, (1) + ])t), will be represented simply by 13 The present

formulations allow for spatially varying viscosity.

In general curvilinear coordinates, (_,/7, _'), the governing equations can be written as

Oh= -_¢, ^a--7 - (<- '_") + # = -_ (2.7)

(2.8)

where t_ is the right-hand side of the momentum equation, and

¢,=¢,.;_or_" ,fori=l,2, or3
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The source term _ is used to represent centrifugal and Coriolis forces in a steady rotating reference frame, and will

be discussed later in this section. F3r most flow applications, this term is set to zero.

ARTIFICIAL COMPRESSIBILITY METHOD

Major advances in the state of the art in CFD have been made in conjunction with compressible flow computations.

Therefore, it is of significant interest to be able to use some of these compressible flow algorithms for incompressible
flows. To do this, the artificial compressibility method of Chorin (1967) can be used. In this formulation, the

continuity equation is modified by adding a pseudo-time derivative of the pressure, resulting in

(2.10)

where ,B is an artificial compressioility parameter and _' is a pseudo-time parameter. This forms a hyperbolic-

parabolic type of pseudo-time depe_ldent system of equations. Thus, implicit schemes developed for compressible

flows can be implemented to solve for steady-state solution. In the steady-state formulation the equations are to be

marched in a time-like fashion until the divergence of velocity in equation (2.10) converges to a specified tolerance.

The time variable for this process ro longer represents physical time, so in the momentum equations t is replaced

with 7, which can be thought of as a pseudo-time or iteration parameter.

Physically, this means that waves of finite speed are introduced into the incompressible flow field as a medium to

distribute the pressure. For a :ruly incompressible flow, the wave speed is infinite, whereas the speed of

propagation of these pseudo wave.,; depend on the magnitude of the artificial compressibility parameter. In a truly

incompressible flow, the pressure field is affected instantaneously by a disturbance in the flow, but with artificial

compressibility, there is a time lag between the flow disturbance and its effect on the pressure field. Ideally, the

value of the artificial compressibility parameter is to be chosen as high as the particular choice of algorithm will allow

so that the incompressibility is recovered quickly. This has to be done without lessening the accuracy and the

stability property of the numerical method implemented. On the other hand, if the artificial compressibility parameter

is chosen such that these waves travel too slowly, then the variation of the pressure field accompanying these waves

is very slow. This will interfere with the proper development of the viscous boundary layer. In viscous flows, the

behavior of the boundary layer is very sensitive to the streamwise pressure gradient, especially when the boundary

layer is separated. If separation is aresent, a pressure wave traveling with finite speed will cause a change in the

local pressure gradient which will affect the location of the flow separation. This change in separated flow will feed

back to the pressure field, possibly preventing convergence to a steady state. When the viscous effect is important
for the entire flow field as in most internal flow problems, the interaction between the pseudo-pressure waves and the

viscous flow field is especially important.

Artificial compressibility relaxes the strict requirement of satisfying mass conservation in each step. However, to
utilize this convenient feature, it is essential to understand the nature of the artificial compressibility both physically

and mathematically. Chang and Kwak (1984) reported details of the artificial compressibility, and suggested some

guidelines for choosing the artificial compressibility parameter. Various applications which evolved from this concept



• t

have been reported for obtaining steady-state solutions (elg., Steger and Kutler, 1977; Kwak et al. 1986; Chang et
al., 1988; Choi and Merkle, 1985). To obtain time-dependent solutions using this method, an iterative procedure can

be applied in each physical time stc,p such that the continuity equation is satisfied (see, Merkle and Athavale, 1987,

Rogers and Kwak ,1988, Rogers, Kwak, and Kiris, 1991, Belov et. al., 1995). Further discussions on the artificial
compressibility approach can be fot_nd in the literature (see, Temam, 1979, Rizzi and Eriksson, 1985).

Combining equation (2.10) and the *nomentum equations gives the following system of equations:

ar a_i

where _t is the right-hand-side o _the momentum equation and can be defined as the residual for steady-state

computations, and where

/_ D u (2.12)

When the governing equations are solved in a steadily rotating reference frames, the source term, _, represents^

centrifugal and Coriolis terms. If the relative reference frame is rotating around the x-axis, the source term S is given

by
I- 0 1

I 0 I
= Ig (f y + 2w) I

where _ is the rotational speed. Ir_ this report, the source term, _, is set to zero other than for rotational steady

v and w a assolutions• Relative velocity compom:_nts are written in terms of absolute velocity components u a, a,

U =H
a

v =v,, +_.z

w =w. -ff2y

Time-dependent calculation of incompressible flows are especially time consuming due to the elliptic nature of the
governing equations. This means that any local change in the flow has to be propagated throughout the entire flow
field. Numerically, this means that in each time step, the pressure field has to go through one complete steady-

state iteration cycle, for example, by Poisson-solver-type pressure iteration or artificial compressibility iteration
method. In transient flow, the physical time step has to be small and consequently the change in the flow field may
be small. In this situation, the number of iterations in each time step for getting a divergence-free flow field may not

be as high as regular steady-state computations. However, the time-accurate computations are generally an order

of magnitude more time-consuming than steady-state computation. Therefore, it is particularly desirable to develop
computationally efficient methods either by implementing a fast algorithm and by utilizing computer characteristics

such as vectorization and parallel p,ocessing.

A time-accurate method using artifi=ial compressibility developed by Rogers, Kwak, and Kiris (1991) is summarized
next• In this formulation the time derivatives in the momentum equations are differenced using a second-order, three-

point, backward-difference formula
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where the superscript n denotes tt-e quantities at time t = nat and t2 is the right-hand side given in equation (2.7).

To solve equation (2.13) for a divergence free velocity field at the (n + 1) time level, a pseudo-time level is introduced
^ tl+l,m+[

and is denoted by a superscript m. The equations are iteratively solved such that u approaches the new
^n+l ^ n+l,rn+l

velocity u as the divergence of u approaches zero. To drive the divergence of this velocity to zero, the

following artificial compressibility relation is introduced:

p_+l,m+l _pn+l,m = --_ V'/_n+l'm+l (2.14)
Ar

where _" denotes pseudo-time and fl is an artificial compressibility parameter. Combining equation (2.14) with the

momentum equations gives

I z'_ _" ["lDn+l'm+l-bn+l'm)=-Rn+l'm+l-Zmtl.5bn+l'm-2L)n+0-5Dn-l) (2.15)
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where _ is the same vector defined in equation (2.13), _ is the same residual vector defined in equation (2.11),

and [tr is a diagonal matrix given by
[-1 1.5 1.5 1.5-]

Itr = diag ' At' At' At J

Finally, the residual term at the m -_ 1 pseudo-time level is linearized giving the following equation in delta form

IL / ^\n+l,m-]..__ ___.._)(o_R ] j_,Dn|/^ +l,m+l _ i)n+l,m )= __en+l,m __AtL _. 5_) n+l,m - 2]_) n + 0.5D n-I ) (2.16)

As can be seen, this equation is very similar to the steady-state formulation which can be rewritten for the Euler

implicit case as

+,_b°
l JA--_I .-_)J(,D" )= (2.17,

Both systems of equations will require the discretization of the same residual vector /_. The matrix equation is

solved iteratively by using a non-factored Gauss-Seidel type line-relaxation scheme employed by MacCormack

(1985), which maintains stability and allows a large pseudo-time step to be taken. Details of the numerical method
can be found in paper by Rogers, Kwak, and Kiris (1991). The GMRES scheme has also been utilized for the

solution of the resulting matrix equation (Rogers, 1995). Computer memory requirement for the flow solver (INS3D-

UP code) with line-relaxation is 35 times the number of grid points in words, and with GMRES-ILU(0) scheme is 220

times the number of grid points in words.

PRESSURE PROJECTION METHOD

In 1965, Harlow and Welch published the first primitive variable method using a Poisson equation for pressure. In

this method, called the marker-and-cell (MAC) method, the pressure is used as a mapping parameter to satisfy the

continuity equation. By taking the divergence of the momentum equation, the Poisson equation for pressure is
obtained:

3h 3 c)u
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The usual computational procedure involves choosing the pressure field at the current time step such that continuity
is satisfed at the next time step. The original MAC method is based on a staggered arrangement on a 2-D

Cartesian grid. The staggered grid conserves mass, momentum, and kinetic energy in a natural way and avoids odd-
even point decoupling of the ff'es_ure encountered in a regular grid (Gresho and Sani, 1987). Even though the

original method used an explicit Euter solver, various time advancing schemes can be implemented with this
formulation. Ever since its introduction, numerous variations of the MAC method have been devised and successful

computations have been made.

The MAC method can be viewed a:_ a special case of the projection method (i.e. Chorin, 1968). In this method the

strict requirement of obtaining the correct pressure for a divergence-free velocity field in each step may significantly
slow down the overall computationa _,efficiency. To satisfy the mass conservation in grid space, the difference form of

the second derivative in the Poisson equation has to be constructed consistent with the discretized momentum

equation (see Kwak, 1989).

To solve for a steady-state solution the correct pressure field is desired only when the solution is converged. In this
case, the iteration procedure for th_ pressure can be simplified such that it requires only a few iteration at each time

step. The best known method usng this approach is the Semi-Implicit Method for Pressure-Linked Equations

(SIMPLE) (Patankar, 1980 ; Chen et al., 1995). The unique feature of this method is the simple way of estimating the
velocity and the pressure correction. This feature simplifies the computation but introduces empiricism into the
method. Despite its empiricism, th_ method has been used successfully for many steady-state computations. It is
not the intention of the present paper to evaluate this method, and readers interested in this approach are referred to

the above cited references.

The time-integration scheme is based on operator splitting, which can be accomplished in several ways by

combining the pressure, oonvectiw.,, and viscous terms in the momentum equations. The fractional-step method is
based on the decomposition of vector field into a divergence free component and a gradient of a scalar field. Since its

inception, this approach is perhaps the most widely used method in computing incompressible flow. Variations of
this idea are too numerous to list h_re.

The common application of fractiorlal-step method is done in two steps. The first step is to solve for an auxiliary

velocity field using the momentum equations. In the second step, the velocity field is corrected by using the
pressure, which can map the auxiliary velocity onto a divergence free velocity field. In the first step, the momentum

equations are discretized in time using a second-order implicit I_nga-Kutta method. The Poisson equation for
pressure is obtained by taking the Civergence of the momentum equations and by using the continuity equation. For
the spatial discretization, a finite-v_lume formulation is used where pressure is defined at the cell center and the
mass fluxes at the faces of each :_ell. The mass-conservation equation is evaluated by computing the mass flux

across faces of a computational cell. When the mass fluxes are chosen as unknowns, the continuity equation is

satisfied automatically in generalized coordinate systems. The continuity equation with this choice of the dependent
variables takes a form identical to the Cartesian case. Therefore, the mass fluxes are considered as the natural

dependent variables for projection methods in curvilinear coordinates. Treating the mass fluxes as dependent
variables in a finite-volume formulation is equivalent to using contravariant velocity components, scaled by the inverse
of the transformation Jacobian, in _ finite-difference formulation. This choice of mass fluxes as dependent variables

complicates the discretization of th_ momentum equations. In order to replace Cartesian velocity components by the
new dependent variables, namely, _he contravariant velocity components, the corresponding area vectors are dotted
with the momentum equations. Then the integral momentum equation is evaluated on different computational cells
for each unknown. For the definition of variables, a staggered grid orientation was selected to eliminate checker-

board-like oscillations in pressure and provides more compact stencils. Full details on the derivation of momentum

equations and the solution procedure is outlined in references by Rosenfeld, Kwak, and Vinukur (1991) and by Kids
and Kwak (1996). A flow solver using the above procedure is designated as INS3D-FS. Since each equation is

solved in a segregated fashion, the .-nemory requirement for GMRES solver in INS3D-FS is only 70 times the number

of grid points in words.



COMPUTED RESULTS

FLOW PAST 90°FLAT PLATE

Numerical results for the time evoltJtion of twin vortices behind a two-dimensional fiat plate are presented. Several

cases were run to with various algorithmic parameters. To expedite the process, a two-dimensional test case is
selected here. It should be noted tl_at the associated flow solvers, INS3D-UP for the artificial compressibility method

and INS3D-FS for the pressure pr)jection method, are written for three-dimensional applications. This numerical

experiment is studied to help select a method for large three-dimensional unsteady applications where computing
resources become a critical issue.

Figure 1. Computational grid for th_ flow past a 90-degree float plate (plate thickness = 0.03 H).
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Figure 2. Velocity vectors at various non-dimensional times (INS3D-FS).



ComputedresultsfrombothmethodsarecomparedwiththeexperimentaldatabyTanedaandHonji(1971).The
experimentwascarriedoutina w_tertank40cmwide.A thin,3cmhighplatewasimmersedinwater.Theflow
wasstartedfromrestimpulsivelyatthevelocityu=0.495cm/s.TheReynoldsnumberforthiscaseis126basedon
theplateheight.Thecomputationalgridsizeis 181x81in flowandverticaldirections,and3layersofthisgridare
usedto obtaintwo-dimensionalresults(figure1). SinceINS3D-FSis writtenin a finite-volumestaggered-grid
formulation,it requiresoneadditionalghostcell in eachdirection.Figure2 showscalculatedvelocityvectors
obtainedfromINS3D-FSatvarious'_imes.Theflowseparatesattheedgesoftheplateandformsa vortexpair.The
twinvorticesbecomelongerinthelow directionwithtime.Thetimehistoryofthestagnationpointiscomparedwith
experimentalresultsandothernumericalresultsinfigure3. Symbolsrepresentexperimentalmeasurements,and
thesolidlineandthedashedlinerepresentresultsfromINS3D-UPandINS3D-FS,respectively,tnadditionthe
dottedlineshowsthenumericalresultsfromfiniteelementformulationsofYoshidaandNomura(1985).
Infigure3,theintervalfortimeinte(jrationwas0.5sec,whichcorrespondstonondimensionalvalueof0.0825.Even
thoughtheplatestartedimpulsively/in theexperiment,thecomputationspresentedin figure3 havea slowstart
procedure.Infigure4,twodifferentwaysofstartingtheflowareprescribed,namely,animpulsivestartasinfigure4a
andaslowstartasprescribedinfigJre4b.YoshidaandNomura(1985)usedthesameslowstartprocedureintheir
calculations.Fortheslowstartcase,thevelocityprofileshownin figure4bis prescribedandthestartingtimeof
calculationisappropriatelyshiftedfromthatofexperiment.

First,INS3D-FSresultsarepresentedin figures5 and6. In figure5, theeffectof startingprocedureon the
developmentoftheflowis shown.Here,a non-dimensionaltimestepof 0.0825wasused.Therearemeasurable
differencesin theresultingflows,hlcreasingthespatialresolutiondoesnotchangetheresultssignificantlywhile
decreasingthetimestepimprovestheagreementwithexperiments,asshowninfigure6.
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Figure 4. Prescribed velocity for an impulsive start (a) and for a slow start (b).

These unsteady computations usin(.i a time step size of 0.0825 was completed in two hours of CPU time on single

processor Cray-J90. Computationa results using the artificial compressibility code, INS3D-UP, are presented in

figure 7. Results using two different artificial compressibility parameters, BETA, are compared. For time accurate
solutions, sub-iterations should be terminated when the divergence of the velocity" reached a specified error limit. In

reality this will impose heavy burden on available computing resources. Therefore, the maximum number of sub-
iterations, NSUB, is artificially fixed at 10 and 40 for the present experiment. With 10 subiterations, the



incompressibilityconditionsis not fully satisfiedat eachphysicaltimestepresultingin largeerroras time
progresses.Computingtimerequirementusinglinerelaxationschemeis largeranging4 and10hoursofCPUtime
for10and40subiterationsrespectizelyonasingleprocessorCray-J90computer.It isobservedthatforengineering
applications,afastconvergencescqemeisnecessaryateachphysicaltimestepinorderto meetincompressibility
conditionwithinreasonableaccuracy.Otherwise,artificialcompressibilitymethodwithlinerelaxationschemecan
beexpensivefor 3D time-accuratecomputations.In orderto alleviatethisdifficulty,GMRES-ILU(0)solveris
implementedin INS3D-UPattheexpenseof increasingmemoryrequirement.Theresultsshownin figure8 were
obtainedwith lessthan4 hoursof Cray-J90computer.Theagreementbetweenthe computedresultsand
experimentaldatais better. WithGMRES-ILU(0)solver,themassflowratiobetweeninflowandexitisalways
satisfied.In addition,the discrepanciesbetweennumericalresultsareverysmallwhentwodifferentvaluesof
artificialcompressibilityparameter_ereused.
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Whena fastconvergingscheme,:;uch as a GMRES-ILU(0) solver, was implemented into artificial compressibility

method, reasonable agreement was obtained between computed results and experimental data. Memory

requirement of this scheme is the major drawback for three-dimensional large-scale applications. However, using

parallel computing platforms, such as SGI Origin systems, memory requirement may not be a significant issue. The
line-relaxation scheme in artificial c3mpressibility method becomes very expensive for time accurate computations
and could lead to erroneous solutioqs if incompressibility is not enforced in each time step. The pressure projection

method is usually more expensive _or steady state solutions due to the time required for the Poisson equation for

pressure. For cases where very sm_lll physical time step is required, the pressure projection method was found to be
computationally efficient since it does not require subiterations procedure. However, the governing equations are not

fully coupled as in the artificial compressibility approach, and this may affect the robustness and limit the maximum
allowable time step size for complicated geometries in engineering applications.

PUMP TECHNOLOGY FOR LIQUID ROCKET ENGINE

Until recently, the high performances-pump design process was not significantly different from that of 30 years ago.

During the past 30 years a vast amount of experimental and operational experience has demonstrated that there are

many important features of pump flows which are not accounted for in the current semi-empirical design process.
Pumps being designed today are no more technologically advanced than those designed for the Space Shuttle Main

Engine (SSME). During that same time span huge strides have been made in computers, in numerical algorithms,
and in physical modeling. The major accomplishment of this work is to extend the CFD technology to validate
advanced CFD codes on pump flow.', and to demonstrate their value to the pump designer. Rocket pumps involve full

and partial blades, tip leakage, and an exit boundary to diffuser. In addition to these geometric complexities, a
variety of flow phenomena are enc(>untered in turbopump flows. These include turbulent boundary layer separation,
wakes, transition, tip vortices, three-dimensional effects, and Reynolds number effects. In order to increase the role

of Computational Fluid Dynamics qCFD) in the design process, he CFD analysis tools must be evaluated and

validated so that designers gain cor/fidence in their use.

The incompressible Navier-Stokes fl3w solver, INS3D-UP, has been validated for pump component analysis. In this
validation effort, computed results c3tained from a rocket-pump inducer simulation were compared with experimental
data. Further details can be found in the paper by Kiris at al (1993). The resulting computational procedure was

applied to the flow through the S3ME High Pressure Fuel Turbopump impeller and to the development of an

advanced pump impeller (Kiris and Kwak 1994). The results from the advanced-pump impeller-flow analysis are

presented next.
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Figure 10. Advanced pump impeler computational

grid on the hub surface.
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In Figure 9, a cross-sctional view of the advanced-pump impeller is shown schematically. The computational model
of this pump includes the impeller and the exit cavity region. Figure10 shows the computational grid near the hub

10



regionoftheimpeller.TheimpellerJesignflowrateis1,205gal/minwithadesignspeedof6,322rpm.TheReynolds
Numberforthiscalculationwas181,283peri-rich.In Figure11,themeridionalvelocityobtainedfromsteady-state
calculationsin therotatingreferanceframeis shownat the impellerdischarge.A relativex-distanceismeasured
fromtheshroudto hub,wherex=l.()isthehub.Themeridionalvelocities,Cm, were integrated along a radial strip for

each constant x position and they were non-dimensionalized by the wheel speed of 249.5 ft/sec. The meridional

velocity distribution for 5% and 10% recirculation from the exit shroud cavity were also plotted. When the exit

shroud cavity has leakage to the inpeller eye, the velocity peak at the impeller exit moves toward to the center of
the b2 width, where b2 is defined a.' the blade height at the impeller exit (see figure 9). However, the shroud leakage

has only minor effects on the solutk n at impeller exit (Figure 11).
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Figure 12. Comparison of blade-to-blade meridional

velocity at the impeller exit.
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In Figure 11, the symbols represent experimental data, and the lines represent Cm distributions for the flow with
vaneless space at the exit of the impeller. The test data shows that the peak is closer to the center of the b2 width.
The discrepancy between the coml:uted results and experimental data is partially due to the recirculation flow in the

hub cavity. The leakage at the hub cavity leads to a stronger recirculation region which shifts the velocity peak to the
center of the b2 width. Since the CFD analysis did not include the leakage at the hub cavity, the predicted

recirculation region in the vaneless _pace is not as strong as in the experimental study.

Figure 12 shows blade-to-blade velocity distributions at the impeller exit. The blade-to-blade velocity distribution
illustrates the impeller-exit flow cistortion. Symbols represent the experimental data and the lines represent

computed results. The jet-wake like pattern, which produces and unsteady load in the diffuser vanes, was captured
at both meridional locations. Overal, the numerical results compare reasonably well with the experimental data.

More recently, an unsteady-flow simulation capability utilizing overset grid approach for a multi-component

turbopump geometry was develope,_ at NASA-Ames Research Center. The motivation of this effort was primarly was
based on two elements. First, the e'_tire turbo pump simulation is intended to provide a computational framework for

the design and analysis of an entire liquid rocket engine fuel supply system. The second motivation for this research
was to support the design of liqui,J rocket systems for development of space transportation systems. Since the
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spacelaunchsystemsin thenearfutureare!ikelyto relyon liquidrocketengines,increasingtheefficiencyand
reliabilityoftheenginecomponent.';is animportanttask.A SubstantialC0mpuiationaltimereductionforthese3D
unsteadyflowsimulationsisrequire:ltoreducethedesign-cycletimeofthepumps.Partofthisspeedupwillbedue
toenhancementsincomputerhardware.Theremainingportionofthespeed-upmustbecontributedbyadvancesin
algorithmsandbyefficientparallelirnplementations.Thefollowingsectionoutlinestheinitialeffortandstepstakenin
ordertoreachthisspeed-up.

Thegeometryfor a typicalliquid)xygenpumphasvariousrotatingandstationarycomponents,suchasflow-
straightener,inducer,impeller,diffuser,wheretheflowisextremelyunsteady.Figure13showsthegeometryand
computedsurfacepressureofthenducerfromsteady-statecomponentsanalysis.Whenrotatingandstationary
partsareincluded,time-dependentsimulationsneedtobecarriedoutdueto relativemotionofthecomponents.To
handlethegeometriccomplexity,ar oversetgridapproachisused.

Figure14. Overset grid system for the impeller long

blade section with tip clearance.

Figure 15. Geometry of SSME-rigl shuttle upgrade

pump impeller

The overset structured grid approacq to flow simulation has been utilized to solve a variety of problems in aerospace,
marine, biomedical and meteorolog cal applications (Chan 2002). Flow regimes can range from simple steady flows
as that of a commercial aircraft, to _nsteady three-dimensional flows with bodies in relative motion, as in the case of

turbopump configurations. A geometrically complex body is decomposed into a number of simple grid components,
as shown in figure 14. In Figure 14, only long-blade impeller section is shown. For the entire configuration including

inlet guide vanes, impeller blades and diffuser blades as shown in Figure 15, the computational grid has been
generated by using 34.3 Million grid points with 114 zones. The freedom to allow neighboring grids to overlap
arbitrarily implies that these grids can be created independently from each other and each grid is typically of high

quality and nearly orthogonal. Connectivity between neighboring grids is established by interpolation at the grid outer
boundaries (Meakin 2001). Addition of new components to the system and simulating arbitrary relative motion

between multiple bodies are achieved by establishing new connectivity without disturbing the existing grids.

Scalability on parallel compute platforms is naturally accomplished by the already decomposed grid system. For
certain problems, it is more efficient to gather the grids into groups of approximately equal sizes for parallel

processing.

The performance of two different approaches in implementing multi-level parallelism of the INS3D code is reported in
this section. The first approach is _ hybrid MPI/OpenMP and the second approach is Multi Level Parallelism (MLP)

developed at NASA-Ames Research Center (Taft 2000). The first approach is obtained by using message-passing
interface (MPI) for inter-zone parallelism, and by using OpenMP directives for intra-zone parallelism. INS3D-MPI is

based on the explicit message-pa:_sing interface across MPI groups and is designed for coarse grain parallelism.

The primary strategy is to distribute the zones across a set of processors. During the iteration, all the processors
would exchan(le boundary condition1 data between processors whose zones shared interfaces with zones on other

processors. A-simple master-work_;r architecture was selected because it is relatively simple to implement and it is
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a commonarchitectureforparallelCFDapplications.All I/OwasperformedbythemasterMPIprocessanddata
wasdistributedtotheworkers.Afte-theinitializat[or_phaseiscomplete,theprogram5eginsTtsmain iteration loop.

The MLP approach differs from the MPI/OpenMP approach in a fundamental way in that it does not use messaging
at all. All data communication at the coarsest and finest level is accomplished via direct memory referencing

instructions, however, this can orly executed on shared-memory computers. The coarsest level parallelism is

implemented by spawning indepencent processes via the standard UNIX fork. The advantage of this approach over
the MPI procedure is that the user does not have to change the initialization section of the large production code.

Library of routines are used to init.ate forks, to establish shared memory arenas, and to provide synchronization

primitives. The boundary data for the overset-grid system is updated in the shared memory arena by each process.
Other processes access the data 'rom the arena as needed. Figure 16 and figure 17 show the speed-up for the
SSME impeller computations using 19.2 million grid points by using MPl/OpenMP and MLP strategies, respectively.
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Figure 17. Snapshots of particle tr ices and pressure surfaces from unsteady turbopump computations.

Using the MLP parallel implemen,ation, time-accurate computations for the SSME-rigl configuration have been
carried out on SGI Origin 2000 snd 3000 platforms. Instantaneous snapshots of particle traces and pressure

surfaces from these computations are shown in Figure 17. The initial conditions for these simulations used flow at
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rest, and then the impeller star[e:l to rotate impulsively. Three full impeller rotations were completed in the
Simulaiions using 34.3 million grid I:oints. Using 128 SGI Origin 3000 CPUs, one impeller rotation was competed in

less then 3.5 days. This capability' is needed to support the design of pump sub-systems for advanced space

transportation vehicles that are liI.:ely to involve liquid propulsion systems. To date, computational tools for
design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional
viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not

been available for real-world engineering applications. The present effort provides developers with information such as

transient flow phenomena at start Jp, and non-uniform inflows, and will eventually impact on system vibration and

structures.

VENTRICUALR ASSIST DEVICE

Approximately 20 million people worldwide suffer annually from congestive heart failure (CHF), a quarter of them in
America alone. In the United States, an alarmingly low 2,000 to 2,500 donor hearts are available each year. One

potential approach to improve this s_tuation is to use a mechanical device to boost or to create blood flow in patients

suffering from hemodynamic deterioration; that is, loss of blood pressure and lowered cardiac output. The goal of this
device can be to replace the natural heart, i.e. total artificial heart, or to assist an ailing heart, i.e. ventricular assist

device (VAD). In either approach, the device can be used to bridge the gap while waiting for a matching donor heart
for transplantation. However, to ea.,e the shortage of donor hearts, making these devices suitable for long-term or

permanent use would be an ultimate goal.

Another benefit of an assist device i_ the potential for providing time for the natural heart to recover. In some patients,
it has been observed that the natur-]l heart can recover by unloading the pumping requirement through the use of a

VAD. In what conditions this might happen is not very well quantified at this time and should involve physiological

particulars of patients among other factors. From pump technology point of view, the challenge is to design a device
which can deliver the required blood circulation while not adversely impacting human physiological conditions.

Requirements for a VAD related to fluid dynamics are demanding such as: simplicity and reliability; small size for

ease of implantation; pumping capacity to supply 5 liter/min of blood against 100 mmHg pressure; high pumping
efficiency to minimize power requirements; and minimum hemolysis and thrombus formation. In addition to fluid

dynamic issues, there are many otqer important aspects to be taken care of such as material compatibility with the
human body, controls and implantation procedures. Due to the complexity of the flow physics and the delicate

operating conditions, an empirical approach to quantify the flow phenomena in a VAD is very time consuming and
expensive, especially to study many design variations. CFD simulation tools hold the potential to be invaluable for

the development of these devices. In this section, the discussion is focused on how fluid dynamic issues of VAD can
be resolved a computational analys_s, which is extremely challenging. Flow is unsteady and involves moving parts.

For a complete analysis of a VAD, a simulation of the human circulatory system has to be coupled to the device in
use. However, for the purpose of developing mechanical components, a truncated circulation system can be
modeled. For example, empirical ir_flow condition can be specified at the inlet of a VAD. Even with this type of

simplifications, computational approach can produce flow field data in great detail, thus shedding lights to obtain a
better understanding of the domirant flow physics produced by an artificial device. Especially, computational

analysis can be utilized to optimize, the design of mechanical devices at a significantly lower cost and time than

required by an empirical approach.

In 1989, NASA Johnson Space Center (JSC) began a joint project with the DeBakey Heart Center of the Baylor

College of Medicine (BCM) in Houston to develop a new implantable prototype LVAD system. This LVAD is based
on a fast rotating axial pump requiri'lg a minimum number of moving parts. To make it implantable, the device has
been made as small as possible, requiring a very high rotational speed. The computational procedure described in

the pump section has been used t(, provide the designers with a view of the complicated fluid dynamic processes
inside this device.

The flow through the baseline desi!_n of the VAD impeller was numerically simulated by using the INS3D-UP flow

solver and a steady rotating frame of reference. Zonal multiblock grids were used in this component analysis. The
surfaces of the computational grids 1or the VAD baseline impeller are shown in Figure 18. The domain is divided into
five zones with dimensions of 127 >:39 x 33, 127 x 39 x 33, 59 x 21 x 7, 47 x 21 x 5, and 59 x 21 x 7, respectively.

Zone 1 is the region between the sL,ction side of the partial blade and the pressure side of the full blade; the region

between the pressure side of the partial blade and the suction side of the full blade is filled by zone 2; and zones 3
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through5 allowtip-leakageeffects-obeincludedinthecomputationalstudyandoccupytheregionsbetweenthe
impellerbladetipandthecasing.At the zonal interfaces, grid points were matched one-to-one. For all zones, an H-

H type grid topology was used. An Htype surface grid was generated for each surface using an elliptic grid
generator. The interior region of the three-dimensional grid was filled using an algebraic-grid generator coupled with
an elliptic smoother. Periodic boundary conditions were used at the end points in the rotational direction. The design

flow of this impeller is 5 liters per minute and the design speed is 12,600 revolutions per minute (rpm). The problem
was non-dimensionalized by the tube diameter (0.472 inches) and the impeller tip-velocity. The solution was

considered converged when the ma<imum residual had dropped at least five orders of magnitude. Figure 19 shows

the flow pattern near the suction side and pressure side of the baseline impeller blades.

Z_,,_ 2:1_11 x 39 x 33

Z_,,_'c J : $9 :w 21 1 7

Z_wt 4; 47x21 x 7

Z.m_' 5 : _gx2t x7

RotatiomJJ $p¢_ : [,2. N'XJRPM ,_

Figure 18. Computational grid for the baseline model
of DeBakey VAD.

TraceJr Colot_"_ by J_"ial velocity Magnitude
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Figure 19. Flow pattern near the suction and
pressure sides of VAD baseline impeller full blade.

Figure 20. Pressure surfaces d the baseline design

(top) and new impeller design.
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Figure 21. Pressure surfaces of the baseline design

(top) and new impeller design.

A parametric study was performed to optimize the impeller blade shape and the tip clearance. Initially, three different
impeller-blade designs with a tip clearance of 0.009 inches were analyzed. Then baseline blade shape was

analyzed with two tip clearances; the tip clearance of 0.0045 inches shows better hydrodynamic performance in

terms of efficiency and head coefficient than with a tip clearance of 0.009 inches.

Using this design with a tip clearance of 0.0045 inches as the baseline impeller design, ideas from rocket
propulsion were introduced to develop a new implantable VAD. In collaboration with Micromed Technologies and
NASA-JSC engineering team and BCM researchers, a new design consisting of the baseline impeller plus an
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inducerwasinvestigated.Thehul:andbladesurfacesofthebaselineimpellerandthenewimpeller,coloredby
n0ndimensionalizedpressure,areshowninFigure20.Thepressuregradientacrosstheblades,duetotheactionof
centrifugalforce,andthepressurerisefrominflowto outflowareshown.Theinducerprovidesa sufficientpressure
risetotheflowinorderto preventthecavitationontheimpellerblades.Figure21showstheparticletracesthrough
thenewimpellerdesign.Thetracesarecoloredbytherelativetotal-velocitymagnitude.Theparticleswerereleased
neartheinducerleadingedge,thehub,the inducerbladepressureside,andthetipregions.Theswirlingmotionof
theparticlesindicatesa secondaryflow regionbetweenthepartialandthefullblades.Theparticlesreleasednear
thepressuresideofthebladeindicatea radialvelocitycomponentinsidethebladeboundarylayer.Theparticles
tendtoflowfromthehubto thetipoftheblade.Theparticlesneartheinducerleadingedgeandfullbladetrailing
edgeindicatethepresenceofbackflow.
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Parametricstudiestoeliminatethebackflownearthehubregionbytaperingthehubsurfacehavealsoperformed
forthisconfiguration.Figure22showsthecircumferentiallyaveragedmeridionalvelocitydistributionalongtheblade
heightforvariousdesigns.Theoriginalbladedesignis referredto asDesignI.DesignIIhaslessbladecurvature
thanDesignI in thetrailingedgeregion,andDesignIIIhasmorebladecurvaturethanDesignI. InDesignIV,the
bladeshapeforDesignI iskeptant thetipclearanceisreducedfrom0.009inchesto0.004inches.InDesignV,the
hubregionhasthebladeshapeforDesignIandthetipregionhasthebladeshapeforDesignII.Inthisdesign,the
impellerbladeshavebackwardlear:nearthetrailingedgeregion.InDesignVl,thebladeshaveforwardleanwhich
includesDesignIll inthehubregionandDesignI in thetipregion.DesignVIIhassmalltipclearancegap,DesignI
bladeshapeandan inducergeorretryupstreamof impellerblades.In Figure22,alldesignsexceptDesignVII
showedbackflownearthehubregion.Thebackflowhasbeenreducedwithforwardbladeleanwhichissuggested
asa designchange.Figure23shoNstheefficiencycurvesforthesedesignvariations.Theinduceradditionclearly
showssubstantialimprovementinthehydrodynamicefficiency.

ANTI-THR OIvIBO_3EN1C
FRON"FHUB AREA

BLOOD
INFLOW

INDL_E-RADDITION

BIFFUSER_ ANGEE

Figure 25. Contribution of CFD analysis to VAD design.

Besides improving the pumping effciency, the design of the VAD requires good wall washing near the solid walls
and reducing the stagnation region:;. One of the critical regions for potential blood clotting is near the bearing area

between rotating and non-rotating components. Clotting can be caused in the hub area due to either high shear or
stagnation, depending on the gap ald configuration of the area. Figure 24 shows velocity vectors colored by velocity

magnitude for four different bearincj designs. Design 1 is the original baseline design with the cavity width of b. This
design showed very high shear stresses near the rotating hub face and very stagnant fluid region in the lower portion

of the cavity. Increasing the cavity _idth to 3.5b (Design 2), and to 8b (Design 3 and 4) showed that the recirculation
was increased in the cavity. In order to eliminate stagnant areas in the lower portion of the cavity, the hub surface
was tapered. Tapering the hub surface reduced the cavity height, accelerated the flow near the hub region, and

resulted in stronger recirculation in the cavity (Design 4). A modified version of Design 4 has been adopted in the
current DeBakey VAD design. Figure 25 shows the areas that the VAD design is improved by using the present

CFD analysis tool. This unique insight into the internal fluid structures led to an improved heart-assist device which
enabled human implantation of the device. As of June, 2002, over 160 patients have successfully received this VAD.

Thus, improved designs made po.,sible because of the current work is making a far-reaching impact on human

health.

SUMMARY

In this paper, incompressible Na,_ier-Stokes solvers designed for three-dimensional flow simulations have been
discussed. The discussion has been limited to the primitive-variable formulation as it causes fewer complications in

setting the boundary conditions. Numerous computed results have been presented to illustrate the numerical
procedures. Even though computer speed and memory have been increased substantially in the recent past, the

speed and the memory requiremenls of a flow solver are still major factors affecting the turnaround time. INS3D-UP,
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whichisanupwindfinite-differencecodebasedonanartificialcompressibilityapproach,hasbeenbeingappliedtoa
widevarietyof applicationsfor st_,ady-state,time-accurateandrotational-steadysolutions.INS3D-FS,whichis
basedonapressureprojectionmethodusingafinitevolumediscretizationonstaggeredgrids,waswrittensolelyfor
solvingtime-dependentproblems.Thesesolvershavebeenutilizedin manyapplicationsof majorengineering
significance.Asanexample,anefficientandrobustsolutionprocedurefor3-Dturbopumpanalysesanditsspin-off
applicationtoVADimpellerhasbeenpresented.TheflowthroughanadvancedturbopumpimpellerandSSMErig-1
configurationhavebeensuccessfullysimulated.The validatedsolutionprocedurewas then appliedto the
developmentoftheDeBakeyVAD.Variousdesignimprovementsweremadethroughtheuseofthiscomputational
tool.Forexample,the additionol an inducerdramaticallyincreasedpumpingefficiency,therebyreducingthe
hemolysisto anacceptablelevelfor humanuse,andanoptimumcavityredesignpracticallyremovedthrombus
formationinthebearingarea.Ove'all,theVADdevelopmentwasexpeditedbyextendingtheincompressible-flow
simulationprocedureoriginallydevelopedforarocketpump,thusenablinghumanimplantation.Thefinalmeasureof
successhasbeendemonstratedthroughsuccessfulhumanimplantations.
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